Kir6.2 mutations causing neonatal diabetes prevent endocytosis of ATP-sensitive potassium channels.
نویسندگان
چکیده
ATP-sensitive potassium (KATP) channels couple the metabolic status of a cell to its membrane potential-a property that endows pancreatic beta-cells with the ability to regulate insulin secretion in accordance with changes in blood glucose. The channel comprises four subunits each of Kir6.2 and the sulphonylurea receptor (SUR1). Here, we report that KATP channels undergo rapid internalisation from the plasma membrane by clathrin-mediated endocytosis. We present several lines of evidence to demonstrate that endocytosis is mediated by a tyrosine based signal (330YSKF333) located in the carboxy-terminus of Kir6.2 and that SUR1 has no direct role. We show that genetic mutations, Y330C and F333I, which cause permanent neonatal diabetes mellitus, disrupt this motif and abrogate endocytosis of reconstituted mutant channels. The resultant increase in the surface density of KATP channels would predispose beta-cells to hyperpolarise and may account for reduced insulin secretion in these patients. The data imply that endocytosis of KATP channels plays a crucial role in the (patho)-physiology of insulin secretion.
منابع مشابه
Trafficking of ATP-sensitive potassium channels in health and disease.
K(ATP) channels (ATP-sensitive potassium channels), comprising four subunits each of Kir6.2 (inwardly rectifying potassium channel 6.2) and the SUR1 (sulfonylurea receptor 1), play a central role in glucose-stimulated insulin secretion by the pancreatic beta-cell. Changes in the number of channels at the cell surface are associated with genetic diseases of aberrant insulin secretion, including ...
متن کاملMolecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features.
Inwardly rectifying potassium channels (Kir channels) control cell membrane K(+) fluxes and electrical signaling in diverse cell types. Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive (K(ATP)) channel, cause permanent neonatal diabetes mellitus (PNDM). For some mutations, PNDM is accompanied by marked developmental delay, muscle weakness, ...
متن کاملActivating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes.
BACKGROUND Patients with permanent neonatal diabetes usually present within the first three months of life and require insulin treatment. In most, the cause is unknown. Because ATP-sensitive potassium (K(ATP)) channels mediate glucose-stimulated insulin secretion from the pancreatic beta cells, we hypothesized that activating mutations in the gene encoding the Kir6.2 subunit of this channel (KC...
متن کاملActivating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy.
Closure of ATP-sensitive K(+) channels (K(ATP) channels) in response to metabolically generated ATP or binding of sulfonylurea drugs stimulates insulin release from pancreatic beta-cells. Heterozygous gain-of-function mutations in the KCJN11 gene encoding the Kir6.2 subunit of this channel are found in approximately 47% of patients diagnosed with permanent diabetes at <6 months of age. There is...
متن کاملInteraction between mutations in the slide helix of Kir6.2 associated with neonatal diabetes and neurological symptoms.
ATP-sensitive potassium (K(ATP)) channels regulate insulin secretion from pancreatic beta-cells. Gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of this channel cause neonatal diabetes. We report two novel mutations on the same haplotype (cis), F60Y and V64L, in the slide helix of Kir6.2 in a patient with neonatal diabetes, developmental delay and epilepsy. Functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 25 17 شماره
صفحات -
تاریخ انتشار 2006